> SeaWise

Scenario Identification and Test Case Generation for Autonomous shipping

FEASIBILITY STUDY

Hala Elrofai

NEED FOR SAFETY ASSESSMENT METHODOLOGY FOR AUTONOMOUS SHIPPING Autonomy levels (AL) for a system

Current situation:

- The required automation technology exists, however its reliability is insufficient
- One way out is condition-based monitoring, very common in aeronautics
- However, there always occur unforeseen circumstances where an instant reaction is required

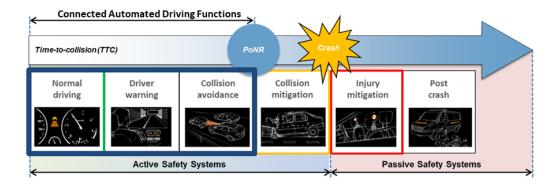
Final goal: Autonomous ships need to achieve a safety level equivalent to conventional ships based upon acceptable testing and validation methods

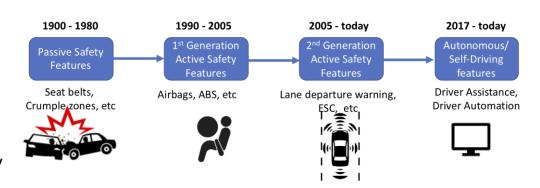
SeaWise BASED ON TNO StreetWise

- Automated mobility systems (or mobile robotics in general) are based on the same concepts and technology
- TNO has good expertise and practices in automated driving (StreetWise)
- Final goal: Autonomous ships need to achieve a safety level equivalent to conventional ships.
 - > First step: to quantify system performance for critical situations as well as non-critical ones
 - Adoption of StreetWise methodology has the potential to reach this goal

NEED FOR 'NEW' SAFETY ASSESSMENT METHODS

FOR ADAS, TRADITIONALLY STRONG FOCUS ON ACCIDENT AND CRASH DATA

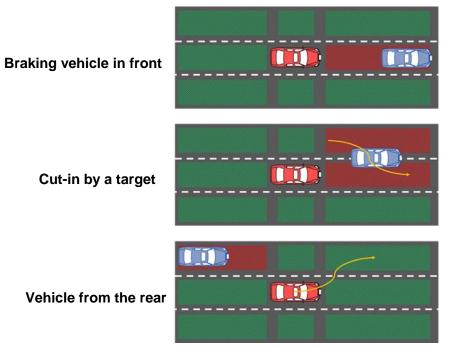

- To set up test protocol for rating
- To determine the performance of systems

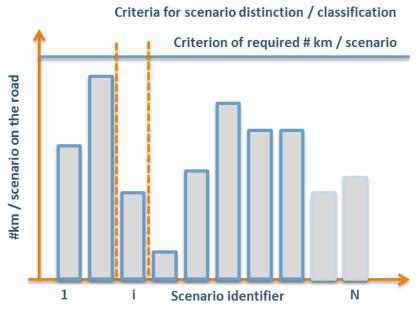

INCREASED NEED FOR ADDRESSING NORMAL EVERY DAY DRIVING

- To determine the performance on the road, not only in seldom critical/crash situations
- Holds for individual ADAS, but increasingly important to deal with the complexity of multiple simultaneously acting ADAS, especially in view of the transition towards higher levels of automation.

ESSENTIAL NEED FOR ROBUST AND EFFICIENT ASSESSMENT METHDOLOGY

- Test cases that check for system robustness are found from normal and every day driving
- However this need to be performed efficiently

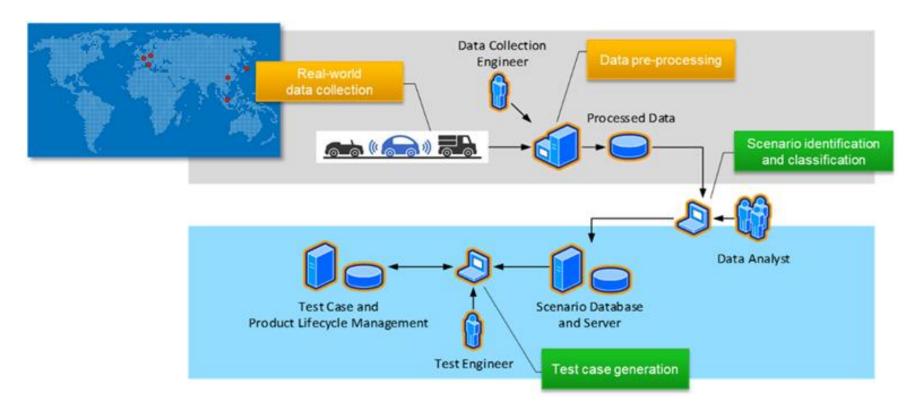


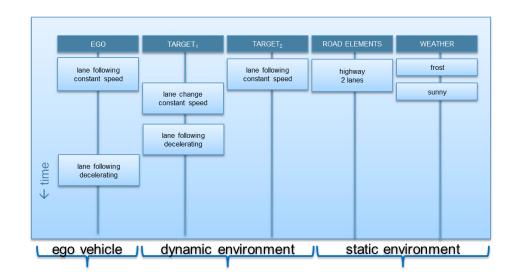


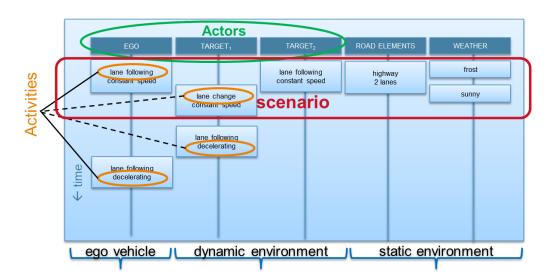
SCENARIO BASED APPROACH

INTERPRET TRAFFIC AS AN ENDLESS SEQUENCE OF DIFFERENT SCENARIOS

- Use library of scenarios in virtual testing for development, testing and validation of CAD systems
- Scenario:
 - A scenario is a description of a situation that can happen or has happened in the real world. In other words, scenarios are used to describe any type of situation that a vehicle in operation can encounter during its lifetime.

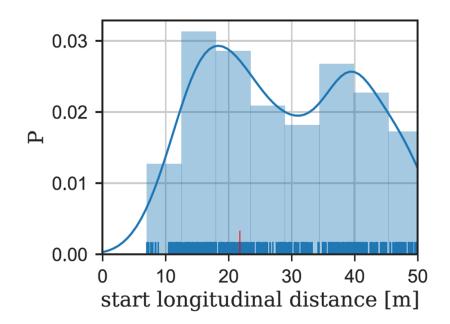


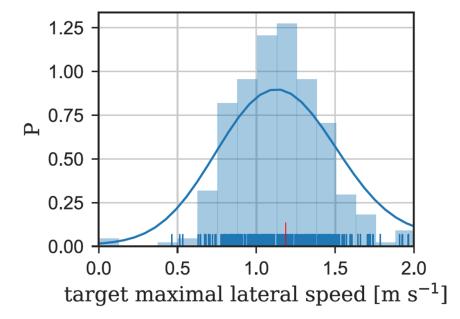



WWW.TNO.NL/STREETWISE

STREETWISE SCENARIO DEFINITION

A SCENARIO

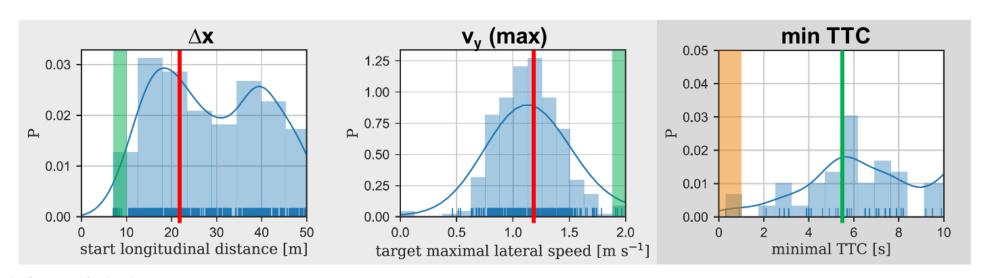

A scenario is a quantitative description of the ego vehicle, its activities and/or goals, its dynamic environment and its static environment. From the perspective of the ego vehicle, a scenario contains all relevant activities.



SCENARIO IDENTIFICATION & PARAMETERIZATION

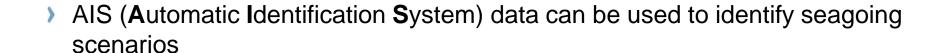
Cut-in by a target

Described by 4 parameters: ego vehicle speed, target vehicle speed, target lateral velocity, longitudinal distance between ego and target vehicle

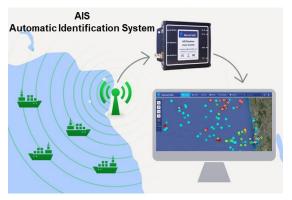


TEST CASE GENERATION

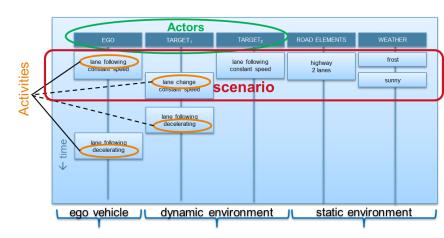
- Test case generation: sampling parameters within realistic ranges
- Combination of parameter values might lead to critical situation:
 - Start longitudinal distance
 - Target maximum lateral velocity
 - Minimal TTC (Time To Collision), minimal THW (Time HeadWay)
- Check with simulation tool whether combination leads to a physically realistic case.


OBJECTIVE OF SeaWise FEASIBILITY STUDY

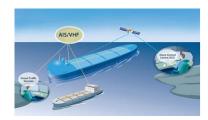
- Feasibility study to check whether the StreetWise methodology can be adopted by Autonomous Shipping to
 - develop a methodology "SeaWise" for generating 'real-life' seagoing scenarios for testing and assessing automated / autonomous sailing / shipping systems
 - investigate the feasibility of using AIS (Automatic Identification System) data for extracting seagoing scenario


OUTCOME OF SeaWise FEASIBILITY STUDY

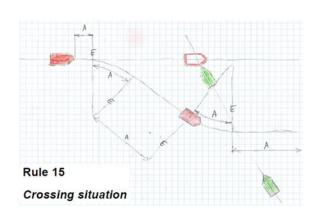
- It is easily possible for SeaWise to adopt the scenario definition of SteetWise and therefore
 - follow the general framework/pipeline of StreetWise
 - reuse StreetWise developed algorithms/scripts
- However many challenges and differences must be taken into account
 - See next slide

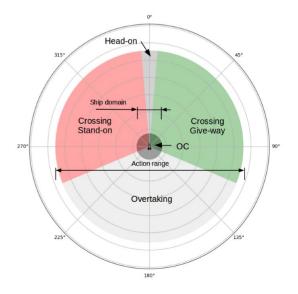

30 Jan 2020

SeaWise VS StreetWise


Scenario element	driving	sailing		
Static environment	road	Sea → hydrodynamic		
activity	simple	complex		
	heading ≈ cruising	heading ≉ curising		
Operator per actor	One driver	Crew + engine room engineers		
Scenario time scale	Seconds/minutes	Minutes/hours		
Reactive time	seconds	minutes		

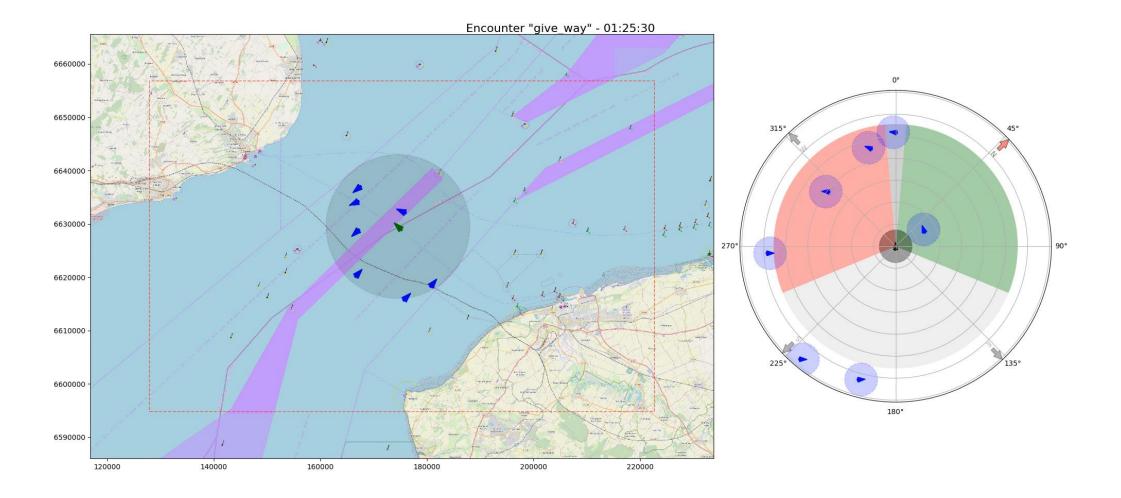
- Maritime domain is by definition Internationally regulated
- Availability of data → AIS data





SeaWise SCENARIO DEFINITIONS

SCENARIO


A scenario is a quantitative description of the ego ship, its activities and/or goals, its dynamic environment and its static stationary environment. From the perspective of the ego ship, a scenario contains all relevant activities.

SCENARIO IDENTIFICATION USING AIS DATA innovation for life

Crossing: Give-Way


DATASET AND DATA PREPARATION

Dataset

- Detween Dover and Calais
- Data for one month
- Harbours were excluded
- Frequency of the data can reach few minutes
- Data from different ships is not synchronized

Data preparation

- Trajectories filtering
- Trajectories projection to x-y coordinates
- Trajectories interpolation to fixed time frame [10 sec]
- Trajectories synchronization for different ships
- Trajectories projection to local polar coordinates

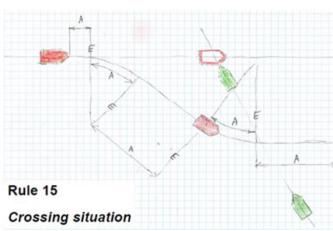
AIS message			
Description	Length	Value	
Message Type	6	000001	
Repeat Indicator	2	00	
MMSI	30	001100001111010101000011011110	
Navigation Status	4	1111	
Rate of turn	8	1000000	
Speed over Ground	10	0000000000	
Position Accuracy	1	1	
Longitude	28	0000001010000101100100000100	
Latitude	27	001110101010000010101110110	
Course over ground	12	010001010011	
True Heading	9	111111111	
Time stamp	6	101000	
Maneuver indicator	2	00	
Spare	3	000	
RAIM flag	1	1	
Radio status	19	0010100000111110011	

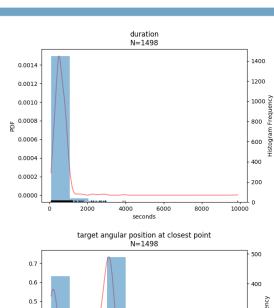
SCENARIO IDENTIFICATION

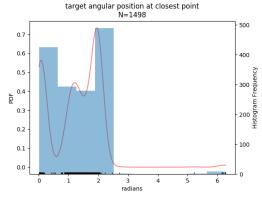
- Assumptions (common practice and literature)
 - Ship Domain: a circle around the ship with radius of 1.5 km (approx. 0.8 NM)*
 - Action Range based on COLERG 11.11 km (approx. 6NM)*
 - Visible Range 13.5km (approx. 7.3 NM)**

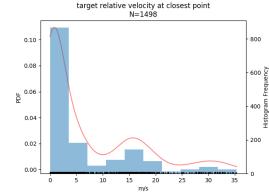
Scenario parameters		
Individual behaviour (ego, targets)	Interaction between ego and target	
speed on ground (SoG) course on ground (CoG) angle (position)	relative speed relative distance time to closest point of approach (time to collision) distance to closest point of approach (distance to collision) scenario duration	

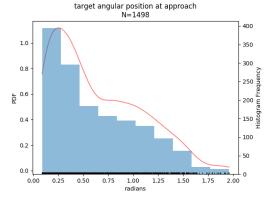
^{*} Zhang et al., 2015

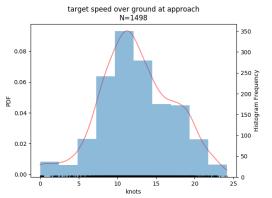

^{**} Lin, 2006

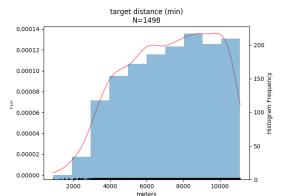

SCENARIO IDENTIFICATION & PARAMETERS DISTRIBUTION

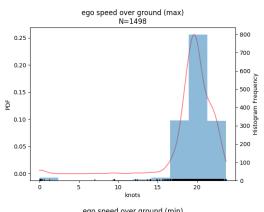


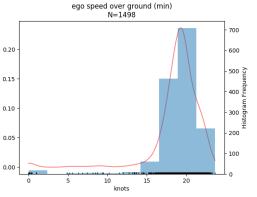

Crossing: Give-Way

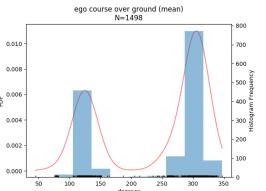












CONCLUSIONS

- It is easily possible to adopt the StreetWise concept and framework by SeaWise
- However there are several challenges to be taken into account

AIS data showed great potential as rich data source for scenario identification

NEXT STEPS

- > Find engaged partners to further develop and enhance the database for SeaWise
- If interested please contact the following:
 - > Pieter Boersma pieter.boersma@tno.nl
 - Eric Engelbrecht eric.engelbrecht@tno.nl
 - Hala Elrofai hala.elrofai@tno.nl

REFERENCES

- Elrofai, H., Paardekooper, J.P., de Gelder, E., Kalisvaart, S., den Camp, O.O., 2018. Scenario-based safety validation of connected and automated driving. https://www.tno.nl/Streetwise
- > H. Elrofai, D. Worm, and O. Op den Camp, "Scenario identification for validation of automated driving functions," in Advanced Microsystems for Automotive Applications 2016, Springer, 2016, pp. 153–163.
- Erwin de Gelder., Jan-Pieter Paardekooper., Arash Khabbaz Saberi., Hala Elrofai., Olaf Op den Camp., Jeroen Ploeg., Ludwig Friedman., Bart De Schutter, 2019, "Ontology for Scenarios for the Assessment of Automated Vehicles", Submitted to Transportation Research Part C: Emerging Technologies
- Zhang, J., Zhang, D., Yan, X., Haugen, S., Soares, C.G., 2015. A distributed anti-collision decision support formulation in multi-ship encounter situations under COLERG. Ocean Engineering 105, 33634
- Lin, B., 2006. Behavior of ship ocers in maneuvering to prevent a collision. Journal of marine science and technology 14, 225 230.